

Math 30-1 Trig Quiz I

36 6

Name:

5

(-3,5)

134

Part 1 – Written Response

- 1. An angle in standard position 𝔪 has a terminal arm passes through a point (-3, 5).
 - (a) Sketch the terminal arm, the position of the angle (clearly label 8 as
 - well as the reference angle a), and an appropriate triangle with the exact value of all sides labeled.
 - (b) Determine the exact value of all six trigonometric ratios of θ .
 - $\frac{1}{3} \operatorname{Sin} \Theta = \frac{5}{\sqrt{34}} \operatorname{Cos} \Theta = \frac{-3}{\sqrt{34}} \operatorname{ten} \Theta = \frac{5}{-3}$ $\operatorname{Csc} \Theta = \frac{\sqrt{34}}{5} \operatorname{Sec} \Theta = \frac{\sqrt{34}}{-3} \operatorname{Cot} \Theta = \frac{-3}{5}$
 - (c) Determine the value of $\boldsymbol{\theta}$, correct to the nearest degree and
- hundredth of a radian. $d = \sin^{-1}(5/3) = 59^{\circ} - or - (164. conje)$ So, $\Theta = 121^{\circ}$ or 2.11So, $\Theta = 121^{\circ}$ or 2.11Lo3 Rabitants 2. For the angle $\theta = -\frac{11\pi}{4}$, $(80^{\circ} - 51^{\circ})$ (a) Convert to degrees $T = -\frac{11\pi}{4}$, $(80^{\circ} - 51^{\circ})$ (b) Determine the principal angle, in radians. $T = -\frac{11\pi}{4} + \frac{8\pi}{4} = -\frac{3\pi}{4} + \frac{8\pi}{4} = -\frac{5\pi}{4}$ (c) Sketch both θ and the principal angle. (Label principal angle as $T^{*}PA''$) (d) State the reference angle, in degrees $I = -\frac{11\pi}{4}$ (e) Use your unit circle or special triangles to determine the exact value of $\sin \theta$, $\cos \theta$, and $\tan \theta$

$$Sin\left(-\frac{11}{4}\right) = -\frac{52}{2}\cos\left(-\frac{11}{4}\right) = -\frac{52}{2} + \cos\left(-\frac{11}{4}\right) = 1$$

